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Introduction
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Introduction(Prompt Tuning)
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Introduction
● Prompt-based tuning includes two key 

points:
○ Template design

○ Verbalizer design
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Introduction(Manual Verbalizer)
 Defined by human with domain knowledge

Exploiting Cloze Questions for Few Shot Text Classification and Natural Language 
Inference
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https://aclanthology.org/2021.eacl-main.20.pdf
https://aclanthology.org/2021.eacl-main.20.pdf


Introduction(Search-based Verbalizer)
Search for suitable words from vocabulary automatically

Automatically Identifying Words That Can Serve as Labels for Few-Shot Text 
Classification
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https://aclanthology.org/2020.coling-main.488.pdf
https://aclanthology.org/2020.coling-main.488.pdf


Introduction(Soft Verbalizer)
Trainable tokens as verbalizers
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WARP: Word-level Adversarial ReProgramming

https://aclanthology.org/2021.acl-long.381.pdf


Prototypical Networks
Few-shot prototypes class are computed as the mean of embedded support 
examples for each class

Prototypical Networks for Few-shot Learning
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https://arxiv.org/pdf/1703.05175.pdf


Method
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Method
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 Background(Fine-tuning)
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 classifier

The classifier and PLM are tuned by 
maximizing 



 Background(Prompt Tuning)
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aggregate multiple scores.

 hidden vector



Projection
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Prototypical networks
ProtoNet calculates prototype vectors by taking the average of instance vectors
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prototype vectors



Loss(instance & instance)
Maximizes intra-instance similarity  between instance & instance
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instance pairs of the same 
class



Loss(instance & instance)
Maximizes intra-instance similarity  between instance & instance
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instance pairs of the same 
class



Loss(instance & instance)
Minimizes inter-class similarity  between instance & instance
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instance pairs of the inter-class



Loss(instance & class)
Maximizes intra-class similarity between instance & class
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Loss(instance & class)
Maximizes intra-class similarity between instance & class
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Loss(instance & class)
Minimizes inter-class similarity  between instance & class
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Inference
Calculate the similarity scores of query and prototypes
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query prototypes

query(Embedding)



Experiment
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Experiment

Topic Classification

Entity Typing
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Example:The University of Washington[education] is a public research 
university in Seattle, Washington.[location]



Baselines
1. Manual Verbalizer

2. Search-based Verbalizer

3. Soft Verbalizer
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Soft Verbalizer(WARP)
Learn the Verbalizer in Embedding method
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Baselines
1. ProtoVerb gets better results 

on topic classification(TC) 
than entity typing(ET).

2. ProtoVerb catch up with     
ManualVerb with enough 
samples.
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Baselines
1. ProtoVerb gets better results on 

topic classification than entity 
typing.

2. ProtoVerb catch up with     
ManualVerb with enough 
samples.

3. ProtoVerb will surpass the 
Manual in shot-2 
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Baselines
1. ProtoVerb+ provides a better way to 

utilize training data

2. ProtoVerb+ boosts them 
considerably on all tasks.
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Is ProtoVerb Similar with ManualVerb ?
 World and Tech news includes 

diverse sub-topics 

that are hard to summarize.

30Normalize the scores using the softmax function across the four classes



Fixed Model Experiments
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Ablation 
1. If the Sentence more than the accuracy will effect by  instance and 

instance loss.
2. If the Sentence few will more effect by the instance and class loss.  
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Noisy Samples
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ProtoVerb is more robust than 
baseline methods when facing 
noisy samples.



Conclusion
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Conclusion
1.  A novel approach Automatic verbalizer construction in prompt-based 

tuning

2. ProtoVerb consistently improve promptbased tuning with minor effort.

3. ProtoVerb outperforms state-of-the-art automatic verbalizers 
considerably.
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